	Centre Number	Candidate Number
Candidate Name		

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

CHEMISTRY

9701/3

PAPER 3 Practical Test

MAY/JUNE SESSION 2002

1 hour 15 minutes

Candidates answer on the question paper. Additional materials: As listed in Instructions to Supervisors

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative analysis notes are printed on pages 6 and 7.

FOR EXAMINER'S USE	
1	
2	
TOTAL	

FA 1 is a metal carbonate, XCO₃.
 FA 2 is 2.00 mol dm⁻³ hydrochloric acid, HCl.

The carbonate and acid react according to the following equation.

$$XCO_3(s) + 2HCl (aq) \rightarrow XCl_2(aq) + CO_2(g) + H_2O(l)$$

The enthalpy change, ΔH , for this reaction is $-59.5 \, \text{kJ} \, \text{mol}^{-1}$.

You are required to determine the temperature rise when a known mass of the solid carbonate, XCO_3 , is added to an excess of hydrochloric acid and to use your results to calculate the relative atomic mass, A_r , of the metal X.

Experiment 1

- (a) Weigh the weighing bottle. Add between 3.30 g and 3.50 g of FA 1 to the weighing bottle and accurately weigh the bottle and contents. Record this mass in Table 1.1 below.
- **(b)** Place the plastic cup inside a 250 cm³ beaker. Using the measuring cylinder provided add 50.0 cm³ of hydrochloric acid, **FA 2**, to the plastic cup.

Measure the initial temperature of the acid in the cup and record this in Table 1.2 at the top of page 3.

Empty the contents of the weighing bottle into the acid and stir gently with the thermometer. Record the maximum temperature achieved when the solid has reacted with the acid in Table 1.2 at the top of page 3.

Reweigh the empty bottle, which may contain some residual **FA 1** and record this value in Table 1.1 below.

Experiment 2

(c) Repeat parts (a) and (b) using a clean dry plastic cup, fresh FA 1 and fresh FA 2.

Table 1.1 Mass of FA 1.

	Expt 1	Expt 2
Mass of weighing bottle + FA 1 / g		
Mass of weighing bottle + residual FA 1 / g		
Mass of FA 1 added to acid / g		

[2]

(d) Calculate the average of the two masses of **FA 1** used in *Experiment 1* and *Experiment 2*.

Table 1.2 Temperature changes.

	Expt 1	Expt 2
Maximum temperature achieved / °C		
Initial temperature of FA 2 / °C		
Temperature rise / °C		

[1]

Accuracy [8]

- **(e)** Calculate the average temperature rise for *Experiment 1* and *Experiment 2*.
- (f) Using the average temperature rise from (e) calculate the amount of heat produced by the reaction in the plastic cup. (Assume that 4.3 J are required to raise the temperature of 1.0 cm³ of the solution by 1.0 °C)

[1]

(g) Using your answer to (f) and the ΔH value for the reaction calculate how many moles of FA 1 have reacted.

[1]

(h) Using the average mass of **FA 1** calculated in (d) and your answer to (g) calculate the relative atomic mass, A_r , of the metal X. $[A_r; C, 12.0; O, 16.0.]$

9701/3/M/J/02

[2]

[Total 15]

2 The solution **FA 3** contains **one cation** and **two anions** from the following list: (A l^{3+} , NH $_4^+$, Ba $^{2+}$, Ca $^{2+}$, Cr $^{3+}$, Cu $^{2+}$, Fe $^{2+}$, Fe $^{3+}$, Pb $^{2+}$, Mg $^{2+}$, Mn $^{2+}$, Zn $^{2+}$; CO $_3^{2-}$, CrO $_4^{2-}$, Cl $^-$, Br $^-$, I $^-$, NO $_3^-$, NO $_2^-$, SO $_4^{2-}$, SO $_3^{2-}$.).

In all tests, the reagent should be added gradually until no further change is observed, with shaking after each addition.

Record your observations and the deductions you make from them in the spaces provided.

Your answers should include

- details of colour changes and precipitates formed,
- the names of gases evolved and details of the test used to identify each one.

You should indicate clearly at what stage in a test a change occurs, writing any deductions you make alongside the observations on which they are based.

Marks are **not** given for chemical equations.

No additional or confirmatory tests for ions present should be attempted.

Candidates are reminded that definite deductions may be made from tests where there appears to be no reaction.

Test		Observations [5]	Deductions [4]
(a) Place 4 cm dep FA 3 in a boiling tube and add to contents of the labelled sodium carbonate	ng- he tube		
(b) Place 1 cm dep FA 3 in a test-tand add an eq depth of dilute acid. Add aqueous barium nitrate.	tube ual nitric		

	Test	Observations	Deductions
(c)	Place 1 cm depth of FA 3 in a test-tube and add an equal depth of dilute nitric acid. Add aqueous silver nitrate, followed by dilute aqueous ammonia.		
(d)	Place 2 cm depth of FA 3 in a test-tube and add dilute sodium hydroxide.		
(e)	Place 2 cm depth of FA 3 in a test-tube and add dilute aqueous ammonia.		
(f)	Place 2 cm depth of FA 3 in a test-tube and add dilute hydrochloric acid.		

Summary

	[Total 10]
The anions present in FA 3 are and	[1]
The anions present in FA 3 are and	
The cation present in FA 3 is	

9701/3/M/J/02 [Turn over

QUALITATIVE ANALYSIS NOTES

[Key: ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with		
IOII	NaOH(aq)	NH ₃ (aq)	
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ +(aq)	ammonia produced on heating		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. insoluble in excess	green ppt. insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt. insoluble in excess	off-white ppt. insoluble in excess	
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess	

 $[Lead(II)\ ions\ can\ be\ distinguished\ from\ aluminium\ ions\ by\ the\ insolubility\ of\ lead(II)\ chloride.]$

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives cream ppt. with $Ag^+(aq)$ (partially soluble in $NH_3(aq)$); gives white ppt. with $Pb^{2+}(aq)$
iodide, I ⁻ (aq)	gives yellow ppt. with $Ag^+(aq)$ (insoluble in $NH_3(aq)$); gives yellow ppt. with $Pb^{2+}(aq)$
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	${ m NH_3}$ liberated on heating with ${ m OH^-(aq)}$ and ${ m A}l$ foil, ${ m NO}$ liberated by dilute acids (colourless ${ m NO}$ \rightarrow (pale) brown ${ m NO_2}$ in air)
sulphate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acid)
sulphite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint
sulphur dioxide, SO ₂	turns potassium dichromate(VI) (aq) from orange to green

BLANK PAGE